Guest Editorial

Craniofacial Stem Cells in Health and Disease

O.D. Klein1,2,3 and J.E. Nör4,5,6,7

Keywords: dental, pulp, regeneration, cancer stem cells, oral health, periodontal

Organ regeneration and repair is a holy grail of modern biomedical science. The ability to transplant stem cells into a damaged tissue or to mobilize endogenous stem cells to fight disease offers great hope to modern dentistry and medicine. In addition to the notable clinical advances that have taken place in recent years, the basic science underlying the biology of regeneration has made great strides. The combination of clinical and basic approaches is crucial, as our capacity to deploy stem cells therapeutically will be greatly enhanced by a deep understanding of the basic biology of stem cells. The knowledge gathered through analysis of stem cells in development and tissue regeneration has informed studies that explore the roles of these cells in the pathobiology of diseases such as cancer.

This special issue of the Journal of Dental Research encompasses a diverse group of articles that provide a review of important recent advances in craniofacial stem cell biology as well as examples of state-of-the-art research in the field. The issue spans multiple components of the craniofacial complex, from teeth to bones and glands, and it covers both normal development as well as disease processes.

The dental articles have a notable focus on the pulp, including mineral production by dental mesenchymal stem cells (Volponi et al. 2015), regulation of dentinogenesis by growth factors (Sagomonyants et al. 2015), and the behavior of pulp cells in ex vivo environments (Smith et al. 2015). In addition, stem cells of the adult human periodontium are explored (Athanassiou-Papaefthymiou et al. 2015), and other craniofacial organs covered include the salivary gland (Aure et al. 2015; Maruyama et al. 2015) and the temporomandibular joint (TMJ) (Lu et al. 2015).

The role of stem cells in diseases of the craniofacial complex is reviewed in 2 of the articles (Chai and Zhao 2015; Yin et al. 2015). New discoveries as well as ongoing challenges involving stem cells in head and neck cancer are covered, and interaction between the immune system and stem cells as well as therapeutic opportunities are discussed (Birkeland et al. 2015; Dionne et al. 2015). Another review focuses on papillomavirus infection and its effect on stem cells of the head and neck region (Pulios et al. 2015).

Finally, the issue covers therapeutic strategies in a number of conditions. The current state and future prospects of pulp-dentin regeneration are reviewed (Cao et al. 2015), as is the use of induced pluripotent stem cells in dentistry (Hynes et al. 2015). Original work explores the molecular basis for cell-based therapy of TMJ osteoarthritis (Lu et al. 2015) and possible uses of dental papilla cells in spinal cord injury (De Berdt et al. 2015).

This issue highlights the impressive advances occurring in the craniofacial stem cell field and demonstrates the enormous promise that stem cell–based therapies hold for the future. As a community, we look forward to the day when progenitor and stem cell–based approaches will be a mainstay of curing and preventing craniofacial diseases. We are grateful to all of the wonderful scientists and clinicians who contributed to this issue, and we hope that you as readers will enjoy it!

Acknowledgments

The authors received no financial support and declare no potential conflicts of interest with respect to the authorship and/or publication of this article.

Corresponding Authors:
O.D. Klein, Schools of Dentistry and Medicine, University of California, San Francisco, San Francisco, CA, USA
Email: ophir.klein@ucsf.edu
J.E. Nör, Department of Cariology, Restorative Sciences, and Endodontics, College of Engineering, Medical School, University of Michigan, 1011 N. University, Rm 2353, Ann Arbor, MI 48109-1078, USA.
Email: jenor@med.umich.edu

References

1Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
2Departments of Orofacial Sciences and Pediatrics, University of California, San Francisco, San Francisco, CA, USA
3Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
4Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
5Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI, USA
6Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
7University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA

Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/0022034515608368 jdr.sagepub.com
References


