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A Deep Invertible 3-D Facial Shape Model for
Interpretable Genetic Syndrome Diagnosis

Jordan J. Bannister , Matthias Wilms , J. David Aponte, David C. Katz, Ophir D. Klein,
Francois P. J. Bernier, Richard A. Spritz, Benedikt Hallgrímsson , and Nils D. Forkert

Abstract—One of the primary difficulties in treating pa-
tients with genetic syndromes is diagnosing their condi-
tion. Many syndromes are associated with characteristic
facial features that can be imaged and utilized by computer-
assisted diagnosis systems. In this work, we develop a
novel 3D facial surface modeling approach with the objec-
tive of maximizing diagnostic model interpretability within
a flexible deep learning framework. Therefore, an invertible
normalizing flow architecture is introduced to enable both
inferential and generative tasks in a unified and efficient
manner. The proposed model can be used (1) to infer syn-
drome diagnosis and other demographic variables given
a 3D facial surface scan and (2) to explain model infer-
ences to non-technical users via multiple interpretability
mechanisms. The model was trained and evaluated on more
than 4700 facial surface scans from subjects with 47 dif-
ferent syndromes. For the challenging task of predicting
syndrome diagnosis given a new 3D facial surface scan,
age, and sex of a subject, the model achieves a competitive
overall top-1 accuracy of 71%, and a mean sensitivity of
43% across all syndrome classes. We believe that invert-
ible models such as the one presented in this work can

Manuscript received October 7, 2021; revised January 12, 2022 and
March 1, 2022; accepted March 29, 2022. Date of publication April 5,
2022; date of current version July 4, 2022. This work was supported by
the National Institutes of Health under Grant U01-DE024440, in part by
Canada Research Chairs Program, and in part by River Fund at Cal-
gary Foundation. (Jordan J. Bannister and Matthias Wilms contributed
equally to this work.) (Corresponding author: Jordan Bannister.)

Jordan J. Bannister is with the Biomedical Engineering Graduate
Program, University of Calgary, Calgary, AB T2N 1N4, Canada (e-mail:
jordan.bannister@ucalgary.ca).

Matthias Wilms and Nils D. Forkert are with the Department
of Radiology, the Alberta Children’s Hospital Research Institute,
and the Hotchkiss Brain Institute, University of Calgary, Cal-
gary, AB T2N 1N4, Canada (e-mail: matthias.wilms@ucalgary.ca;
nils.forkert@ucalgary.ca).

J. David Aponte, David C. Katz, and Benedikt Hallgrímsson
are with the Department of Cell Biology and Anatomy, the Al-
berta Children’s Hospital Research Institute and the McCaig Bone
and Joint Institute, University of Calgary, Calgary, AB T2N 1N4,
Canada (e-mail: jose.aponte@ucalgary.ca; david.katz@ucalgary.ca;
bhallgri@ucalgary.ca).

Ophir D. Klein is with the Program in Craniofacial Biology and the De-
partment of Orofacial Sciences, University of California, San Francisco,
CA 94143 USA (e-mail: Ophir.Klein@ucsf.edu).

Francois P. J. Bernier is with the Department of Medical Genetics and
the Alberta Children’s Hospital Research Institute, University of Calgary,
Calgary, AB T2N 1N4, Canada (e-mail: fpbernie@ucalgary.ca).

Richard A. Spritz is with the Human Medical Genetics and Ge-
nomics Program and the Department of Pediatrics, University of
Colorado School of Medicine, Aurora, CO 80045 USA (e-mail:
richard.spritz@cuanschutz.edu).

This article has supplementary downloadable material available at
http://doi.org/10.1109/JBHI.2022.3164848, provided by the authors.

Digital Object Identifier 10.1109/JBHI.2022.3164848

achieve competitive inferential performance while greatly
increasing model interpretability in the domain of medical
diagnosis.

Index Terms—Genetic syndrome, normalizing flow,
interpretable machine learning, 3D shape model.

I. INTRODUCTION

D IAGNOSING human genetic syndromes is a complex and
difficult process due to their diversity, subtle differences

between subjects with different syndromes, and their rarity.
Genetic testing is the ideal way to diagnose afflicted subjects,
but these tests are expensive, genetic experts are often scarce,
and many syndromes exist for which the genetic profile is not yet
known. As a supplement to genetic testing, computer-assisted
phenotyping based on facial images or scans has been proposed
as a low-cost, easy to utilize, and entirely non-invasive strategy
for genetic syndrome screening [1].

The facial morphology associated with a syndrome can be
quite distinctive and it has been shown that facial shape features
are useful diagnostic indicators for many syndromes [1]–[4].
Experienced clinical geneticists will often use facial morphology
as a preliminary diagnostic indicator prior to genetic testing.
The development of robust and fully automatic computational
pipelines to analyze facial morphology would, therefore, allow
non-expert clinicians all across the globe to utilize a unified
quantitative understanding of syndromic facial morphology to
support clinical decision making processes at a very low cost.

Face-based syndrome detection models have been developed
for both 2D facial images and 3D facial surface scans. State-
of-the-art 2D approaches such as [5], [6] commonly use deep
learning-based discrimintative models. However, single uncal-
ibrated 2D images cannot capture facial morphology with the
fidelity of 3D surface imaging [4]. Furthermore, deep discrimi-
native models often lack interpretability, which makes it difficult
for clinicians to understand what information a model uses to
make inferences. Model interpretability is particularly important
in medical applications as many clinicians hesitate to introduce
black box models into their decision making process. On the
other hand, state-of-the-art approaches relying on more infor-
mative 3D surface scans like [4] commonly utilize point-based
generative shape models [7] that are equipped with an inference
mechanism (e.g., a regularized discriminant analysis variant as
proposed in [4]). While these models are more interpretable than
solely discriminative ones, they usually rely on simplified facial
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representations (e.g., a sparse set of landmarks) and simplified
probabilistic assumptions (e.g., Gaussian distributions). Both
of those properties restrict model flexibility in ways that may
impact model performance. 3D facial morphology may not
follow a Gaussian distribution, and sparse landmarks may be
incapable of capturing important, subtle shape details.

In this work, we propose a novel deep learning-based, invert-
ible 3D facial surface modeling approach. The main novelty of
our method is two-fold: (1) In contrast to standard facial shape
analysis methods used for syndrome data modeling (often lim-
ited to Gaussian distributions), our NF model can learn complex
non-Gaussian conditional face distributions. (2) Our model is
fully invertible and, as a result of this, is highly multi-functional.
Specifically, the proposed model is the first non-Gaussian 3D
facial shape model with the ability to (1) infer syndrome diagno-
sis and other demographic variables given a high-resolution 3D
facial surface scan, (2) generate modal, randomly sampled, and
counterfactual 3D faces using demographic information, and (3)
analyze the magnitude of facial variation between and within
demographic groups (e.g., males vs. females) in a fully proba-
bilistic way. The proposed normalizing flow approach efficiently
handles all tasks within a single unified probabilistic model.
The results of the evaluation show how this multi-functionality
can help non-technical clinicians to intuitively understand and
gain confidence in the model and its inference process through,
for example, counterfactual visualizations. To the best of our
knowledge, a deep invertible model of 3D syndromic facial
morphology has not been proposed before.

A. Related Work

1) Face-Based Syndrome Classification: In contrast to the
volumes of work on general facial shape modeling and recog-
nition [8], approaches specifically designed to diagnose genetic
syndromes are scarce. Many available machine learning-based
syndrome classification methods [5], [6], [9]–[12] rely on 2D
frontal facial images of the subject as they are widely available
in a clinical setting. However, this usually restricts the set of
input features to projected geometric information and texture
data, which may limit the achievable classification accuracy [9].
This problem can be alleviated by using 3D geometric infor-
mation from 3D surface scans [3], [4] directly acquired via 3D
scanning techniques [1]. As a low-cost alternative to real 3D data
acquisition, some authors propose to infer 3D shape information
for diagnostic purposes from 2D images [13], [14] by fitting a 3D
face model [15]. Most approaches were developed and evaluated
using a small number of syndrome classes.

2) Generative 3D Facial Shape Modelling: Facial shape
modelling generally aims at estimating a low-dimensional man-
ifold of typical shape variations together with a probability
density based on available high-dimensional training data (e.g.,
contours or meshes). Historically, this has been mostly achieved
by linear approaches [7], [16] that define linear subspaces and
use simple (often Gaussian) densities (see [8] for an overview).
Over the years, those efforts have led to a multitude of so-
called 3D morphable face models (3DMMs; e.g., [15], [17],
[18]). While many 3DMMs successfully disentangle certain
semantically meaningful factors of variation like identity and
expressions, conditioning them on additional demographic

variables is not common or straightforward (e.g., in [18] sev-
eral 3DMMs are built to independently capture age and sex
variations) and available solutions for conditional shape model-
ing [19] typically rely on Gaussian distributions.

3) Deep Learning-Based 3D Facial Shape Modelling: More
recently, the first deep learning-based 3DMMs have been pro-
posed [20]–[25] that make use of specifically adapted versions of
variational auto-encoders (VAE) and generative adversarial net-
works (GAN). In contrast to traditional 3DMMs, their inherent
non-linearity allows them to represent more complex manifolds
and probability densities, which may lead to models that better
capture the data [21]. A unique challenge associated with pro-
cessing 3D surface meshes is their special graph-like structure.
Hence, popular operations widely used in imaged-based deep
learning solutions either need to be specifically adapted (e.g.,
spectral graph convolutions [21]–[23]) or the data needs to be
reparameterized accordingly [25]. Although VAEs and GANs
are excellent for generating visually convincing synthetic data
samples, they are not well suited for tasks that involve evaluating
the likelihood of samples. Both GANs and VAEs require com-
putationally expensive Monte-Carlo integration, which can be
intractable for high dimensional data, or lower-bound approx-
imations to estimate likelihood values [26], [27]. In contrast,
invertible normalizing flow models are designed to support
efficient and exact likelihood evaluation.

4) Normalizing Flows: Normalizing flows (NF) are a re-
cently proposed class of deep learning model. A NF model
represents a learnable bijective function (see reviews in [28],
[29]). NFs are most commonly applied to generative manifold
and density estimation tasks much like VAEs and GANs [30].
However, in contrast to VAEs where two separate models (en-
coder and decoder) are trained to map to and from a latent
variable space, NFs are able to perform encoding and decoding
using the forward and inverse directions of a single unified
model. This avoids consistency issues often seen when modeling
both directions independently. Furthermore, unlike GANs and
VAEs, the likelihood of a NF model can be evaluated efficiently
and exactly. This allows for direct maximum likelihood-based
training, Bayesian inference of condition variables, and estima-
tion of information theoretic measures like KL-divergence and
differential entropy.

Recently, the first NF models operating on point clouds or
mesh data were described (e.g., [31], [32]), but we are not aware
of any work specifically using NFs to build syndromic 3D face
models.

II. METHODS

In this section, we will first introduce our notation and
describe necessary data pre-processing steps before our NF
architecture is described in Section II-C. We then describe in
Section II-D how the model can be used to perform Bayesian
inference of syndrome classes and demographic variables before
different probabilistic interpretability mechanisms are described
in Secs. II-E and II-F.

The overarching goal of our modelling approach is to ef-
ficiently approximate the distribution of human facial sur-
face morphology conditioned on genetic syndrome diagnosis,
age, and sex. For model training, we assume a population
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{(Si, yi)}npop

i=1 of npop subjects to be given. Each tuple (Si, yi)
consists of a subject’s 3D facial surface meshSi and a set of asso-
ciated factors yi = {agei, sexi, syndi} with agei ∈ R+, sexi ∈
{male, female}, and syndrome diagnosis syndi ∈ Γ, where Γ is
a set of clinical genetic syndrome classes including a class for
unaffected (non-syndromic) people.

A. Reference Surface and Registration

Depending on the actual 3D scanning and reconstruction
techniques employed to capture the facial scansSi of the training
population, the number of vertices used to represent each dis-
crete surface and their topology may vary considerably between
subjects. We, therefore, normalize all scans to a reference topol-
ogy with a fixed number of vertices located at corresponding
locations for each subject. This is done by first registering a
fixed template mesh S : V → R3 with |V | = nvert vertices to
all npop scans Si (see Section III-B for details). This results
in non-linear transformations that are used to propagate the
template’s vertices to the subject scans. Finally, positional and
rotational information is removed and each surface is vectorized
by stacking the 3D point coordinates of allnvert vertices to obtain
vectors si ∈ R3nvert .

B. Manifold Estimation

Facial surface meshes produced by modern scanners com-
monly contain tens of thousands of vertices resulting in very
high-dimensional surface vectors si ∈ R3nvert . Estimating a
probability density on this very high-dimensional space is both
computationally challenging and unnecessary since the posi-
tions of neighboring points on densely sampled facial surfaces
will naturally have high mutual information. Therefore, we
construct our model as a probability density on a sub-manifold
of the ambient data space (see [30] for a description of how
manifold and density estimation relate within a NF framework).

As in standard linear shape modeling approaches [7], we
assume that the surface vectors si can be accurately repre-
sented by a nsub-dimensional Euclidean manifold of maximum
data variation F estimated using principal components analysis
(PCA) of the training samples.F is then spanned by the firstnsub

principal components with descending eigenvalue magnitude
and centered at the training sample mean s ∈ R3nvert . More
specifically, all elements of sub-manifold F are identified by the
set s+ s|s ∈ span(F ). Surface vectors si are projected to F in a
least squares sense [7], which results in low-dimensional vectors
fi = FT (si − s) with fi ∈ Rnsub . nsub is selected to be as low as
possible without negatively impacting syndrome classification
performance so that the manifold projection removes only di-
agnostically unimportant information. The manifold projection
can be easily inverted as in standard shape models [7] via
si ≈ s+ Ffi.

C. Model Architecture

Let {(fi, yi)}npop

i=1 denote the training tuples consisting of the
dimensionality-reduced face representations and the associated
conditioning factors. We now aim to estimate the conditional

probability distribution pF (f |y) of facial surface morphology
on manifold F . Mathematically, our NF model represents a
bijective function g(z; y, θ) : Rnsub → Rnsub with trainable pa-
rameters θ that maps elements z of a nsub-dimensional latent
space Z to a nsub-dimensional space F of facial morphology f
while imposing conditions y. We chose a simple Gaussian base
distribution pZ(z) = pZ(z|y) = N(0, I) for the latent variable
space Z. This allows us to express the the potentially non-
Gaussian conditional distribution of interest pF (f |y) using the
change of variables theorem [33]:

pF (f |y) = pZ
(
g−1(f ; y, θ)

) · ∣∣det
(∇g−1(f ; y, θ)

) ∣∣ (1)

Here, |det(∇g−1(f ; y, θ))
∣∣ denotes the Jacobian determinant

of g−1(f ; y, θ). To convert (1) into a tractable NF model, function
g(·; y, θ) must be specified such that it is efficiently invertible
and possesses a tractable jacobian determinant. We first split
g(·; y, θ) = gnlay ◦ · · · ◦ gi ◦ · · · ◦ g1(·; y, θ1) into a chain of nlay

simpler sub-functions (called layers in NF models). The different
types of layers used in our model will be described first, followed
by a summary of how the layers are composed to create the full
NF model (see also Fig. 1).

1) Affine Injector: Within our NF model, the first layer is the
only conditional layer. It applies an affine transformation w =
gi(u; y, θi) determined by the conditions y to each dimension
of the layer’s input u ∈ Rnsub to generate the output w ∈ Rnsub :

w = exp (s(y; θi))� u+ t(y; θi) .

The scaling s(·; θi) and translation t(·; θi) functions can be
complex neural networks as the inverse of the layer can be
computed without having to invert s(·; θi) or t(·; θi) via

u = exp (−s(y; θi))� (w − t(y; θi))

and its Jacobian has a simple triangular structure [34]. We will
refer to this type of layer as an affine injector following [35]. We
choose s(·; θi) and t(·; θi) to be fully-connected neural networks
(two hidden layers, 100 neurons per layer and ELU activations)
with partially shared weights θi. In consideration of the available
training data, we also encode the assumption that the magnitude
of facial shape variation along each dimension of the latent space
does not depend on syndrome class by excluding synd as an
input to the scaling network s(·; θi).

2) Rotation: The second layer in our model is a trainable
rotation layer. Rotation is an appealing transformation in this
context due to its close relation to PCA and related methods for
learning linear bases of data spaces. We use the Cayley transform
to produce a smooth parameterization of the special orthogonal
group SO(nsub) as discussed in [36]. Later in the model, we
also use fixed random rotations to mix information between
dimensions. Rotations are easily invertible and always have a
Jacobian determinant of unity.

3) Affine Coupling Blocks: The next layers of our NF model
are affine coupling layers that were first introduced in [34].
Affine coupling layers also define an invertible affine transfor-
mationw = gi(u; θi)between their inputsu = [u1,u2] ∈ Rnsub

and their outputs w = [w1,w2] ∈ Rnsub . Here, u1 and w1 de-
note the first nsub/2 dimensions and u2 and w2 represent the
second half of the input and output vectors, respectively. The
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Fig. 1. The proposed normalizing flow-based 3D facial shape model is a non-linear, invertible bijection (indicated by bidirectional arrows) between
a normally distributed latent space Z and a linear manifold embedded in a space of 3D facial surfaces. The bijection is modeled as a composition
of bijective layers (affine injector, rotation,...) that successively transform the normal latent density pZ(z) to match the complex density on the
manifold of 3D faces. Furthermore, the bijection is conditional on demographic variables age, sex, and genetic syndrome diagnosis. The synthetic
faces on the right represent maximally probable faces (modes) on the linear manifold that are produced by the model for different combinations of
demographic variables. The characteristic Down syndrome facial phenotype is clearly recognizable in the first column, first row. See section II-B
and II-C for a detailed explanation of the model architecture and mathematical notation.

element-wise affine transformation is then defined as:

w1 = exp (s(u2; θi))� u1 + t(u2; θi) and w2 = u2.

In our model, we use a volume preserving (and differential
entropy preserving) variant of affine coupling layers where
the Jacobian determinant of each layer is constrained to unity
(see [37] for details). In practice, this constraint has a strong
regularizing effect and can be enforced by subtracting the mean
from the vector produced by the scaling function s(·, θi) such
that it sums to zero. We choose s(·; θi) and t(·; θi) to be fully-
connected neural networks (two hidden layers, 32 neurons per
layer and ELU activations) with shared weights θi.

Permuting or mixing the inputs after each affine coupling layer
is necessary because otherwise interactions between dimensions
would be restricted. Therefore, we create affine coupling blocks
consisting of two affine coupling layers separated by a permu-
tation that reverses dimension order. At the end of each affine
coupling block, we also place a random, fixed rotation that mixes
the data as proposed in [33].

4) Scaling: The final layer of our model is a fixed scaling
layer. The fixed parameters of the layer are set once at the start of
training according to the standard deviation of each dimension of
the dimensionality reduced training data. The purpose of the final
layer is to ensure that data representations are normalized as they
pass through the other layers of the model while maintaining the
information associated with data magnitude in the loss function
via the Jacobian determinant of the scaling layer.

5) Layer Composition: The composition order of the various
flow layers used to create g(·; y, θ) is shown in Fig. 1. The
trainable layer parameters θ = {θ1, . . . , θnlay} can be optimized
using maximum likelihood training. We chose a multivariate
Gaussian distribution with identity covariance as a prior for
pZ(z) resulting in the negative log-likelihood loss

L(θ) = −
npop∑
i=1

log
(
pZ

(
g−1(fi; yi, θ)

))

+ log
∣∣det

(∇g−1(fi; yi, θ)
) ∣∣ (2)

for training data {(fi, yi)}npop

i=1. Although the optimization is
carried out on the low-dimensional shape representations fi,

it is equivalent to an optimization on manifold F in the high-
dimensional ambient data space. This is due to the definition of
F as a Euclidean manifold; the manifold projection described in
Section II-B has a constant Jacobian determinant independent
of the input data. [30], [38].

D. Bayesian Inference

To infer the syndrome class syndi of a subject i from facial
surface morphology fi and demographic variables agei and
sexi, the flow model can be used along with Bayes’ theorem
to compute a posterior distribution:

psynd(synd|fi, agei, sexi)

=
pF (fi|agei,sexi,synd)psynd(synd|agei,sexi)

pF (fi|agei,sexi)

(3)

Here, we can see that the inclusion of age and sex as condi-
tioning variables enables our model to account for the effects
of age and sex on facial morphology when making inferences.
Furthermore, an identical approach can be used to infer subject
age or sex. Although this is less relevant for clinical applications,
it nicely demonstrates the multi-functionality of the proposed
model. In addition to a trained flow model, we require a joint
distribution for the condition variables p(age, sex, synd) in
order to perform inference. In this work, we use a naïve prior
that assumes condition variable independence:

p(age, sex, synd) = p(age) · p(sex) · p(synd)
p(age) = Uniform(0, 80)

p(sex) = Bernoulli(0.5)

p(synd) = Uniform(Γ)

(4)

In a clinical application the joint distribution of condition
variables could be set and manipulated by the clinician using
prior knowledge about the application context.

p(age, sex, synd) = p(synd|age, sex) · p(age) · p(sex)
In this case, the distribution p(synd|age, sex) would also

need to be specified using reliable information about the mor-
tality rates of different genetic syndromes, and the prevalence
of different syndromes within each sex.
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E. Face Generation

Data generation capabilities improve interpretability by en-
abling a model to visually answer questions about what in-
formation it has learned and what information it uses to make
inferences. Two of the three interpretablity mechanisms of the
proposed NF model demonstrated in this work involve data
generation.

1) Demographic Specific Face Generation: The first type
of interpretability mechanism is intended to answer questions
about what facial representations the model has learned for
a particular demographic (e.g., “What do 8 a old males with
Down syndrome look like?”). To address this, the model can
be used to generate randomly sampled and maximally probable
faces (modes) to exemplify general trends and typical variability.
Clinicians can then visually assess the facial characteristics the
model has learned.

For this task, our NF model can be used in the same way
as a conditional VAE or GAN without requiring any additional
training. First, a latent sample is drawn from the latent prior.
The sample is then mapped using the NF and the specified
condition variables from the latent space to the data space and
rendered as a 3D surface mesh. Our model can also generate
modes (maximally probable faces) for specific demographics
by mapping the origin of the latent space (the mode of the latent
prior) to the data space in the same way. This property of mode
preservation is a consequence of our model architecture enabled
through use of the affine injector layer and volume preserving
coupling layers.

2) Counterfactual Face Generation: The second inter-
pretability mechanism is intended to answer questions about
what facial information the model uses to justify particular
inferences (e.g., “Why did the model infer the syndrome class
of this subject as unaffected instead of Down syndrome?”).
To address this, the model can be used to generate a counter-
factual face, which represents what the model would expect a
given subject to look like if they belonged, hypothetically, to
a counterfactual demographic group. This counterfactual face
visually shows, by contrast with the subjects true face, what
facial information was used by the model to justify that particular
inference. Counterfactual representations have been shown to
be highly effective when explaining a models decision making
process to non-technical users [39].

For this task, the original subject face is first mapped to the
latent space using the NF and the predicted (or true) condition
variables. Next, the subject’s latent representation is mapped
back to the data space using the inverse direction of the flow and
a different set of counterfactual condition variables. The original
and counterfactual faces can then be visually compared.

F. Variation Analysis

The third interpretability mechanism is intended to answer
questions about the magnitude of inter- and intra-demographic
facial variation as captured by the model (e.g., “How much
overlap is there between the facial morphology of males and
females?”). This information can be presented to clinicians to
help them assess and evaluate the model’s internal understanding

of facial variation within and between demographic groups.
Variance, co-variance, and variance-based statistics are com-
monly used within Gaussian modelling approaches to compute
standardized effect sizes and magnitudes of variation. To address
these questions using a non-Gaussian model such as the one
presented in this work, we propose a more general information-
based approach.

For this task, we compute Monte Carlo estimates of differen-
tial entropy

h (pF (f |yi)) = −
∫
F

pF (f |yi)logpF (f |yi)df (5)

and KL divergence

DKL (pF (f |yi)||pF (f |yj)) = −
∫
F

pF (f |yi)log
pF (f |yj)
pF (f |yi) df

(6)

for and between different demographic groups. Integration over
F weighted by a probability distribution pF (f |yi) can be nu-
merically approximated by sampling from the model, and the
likelihood of samples under different demographic conditions
can be efficiently evaluated using (1).

III. EXPERIMENTS

The first aim of the evaluation is to show that the developed
NF model can accurately infer syndrome diagnosis, age, and
sex from 3D faces. We then use the same model to generate
interpretability results that can be used by clinicians to evaluate
whether the model bases its inferences on reasonable facial shape
information, or noise and other imaging artefacts. Because the
exact same NF model is used for all tasks, the results from the
different evaluations are mutually supportive.

A. Data Description

The 4727 3D facial scans used to train and evaluate our
model were acquired using 3DMD facial imaging systems1

and are available through the FaceBase Consortium2. Patients
with cranio-facial syndromes were recruited through clinical
geneticists at different sites across North America and have a
clinical or molecular diagnosis. Each of the 47 syndromes in this
analysis is represented by 20 or more subjects. 2600 of the 4727
subjects are presumed to be unaffected by a genetic syndrome.
Ethics approval for this study was granted by the Conjoint
Health Research Ethics Board (Id #: REB14-0340_REN4) at
the University of Calgary

B. Data Pre-Processing

Each subject scan was landmarked with a set of eight guide
points using a combination of manual landmarking and an
image-based automatic algorithm [40]. An averaged template
mesh (see Fig. 2) was then registered to each scan. This template

1www.3dmd.com
2See www.facebase.org for more information on how to access the data.
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Fig. 2. Top Left: the average template mesh annotated with eight guide
points. Bottom Left: an example subject scan annotated with the same
eight guide points. Top Right: the subject mesh (with color) overlaid
with transformed template (white mesh). Bottom Right: the transformed
template.

mesh was initially non-linearly mapped to each subject scan
using a thin plate spline transformation anchored by the corre-
sponding guide points. Next, the non-rigid iterative closest point
algorithm [41] was used to relax the template mesh completely
onto the surface of the scan (see Fig. 2 for an example).

The topology of the template was designed so that there is a
bijective mapping between bilaterally (across the median plane
of the template) corresponding vertices. This bijection was used
to produce a mirrored and symmetric version of each subject face
as a form of data augmentation. Finally, information associated
with facial position and rotation was removed from the template
registration transformations and a data manifold was estimated
using the approach described in Section II-B. For this analysis,
we chose nsub = 100, which produced a manifold capturing
99.8% of the total variance in the training data.

C. Training and Evaluation

All NF models evaluated were trained for 1500 epochs using
the NAdam optimizer with a learning rate of 10−3 and a batch
size of 2056 using a Python-based implementation (Tensorflow
2.2.0 and Tensorflow-Probability 0.10.1) and a 2070 Super
NVIDIA GPU with 8 GB memory. The full NF model has 68428
trainable parameters in total. Training a single NF model takes
less than one hour. Mapping individual faces to and from the
latent space is very fast (less than one second) and on par with
a VAE comparison model. Importantly, the time to evaluate
the conditional likelihood pF (fi|yi) of a 3D face fi using the
NF model is comparable to performing a forward or inverse

transformation. This is essential for efficient Bayesian inference
and analysis of variation. Comparatively, approximating the
conditional likelihood of a single sample using a cVAE model
requires expensive Monte Carlo integration. The time to perform
inference using the NF model is slightly longer compared to
discriminative comparison models (MLP, PointNet) due to the
need to sample multiple conditional likelihood values when
computing a posterior distribution. The time to perform an
analysis of variation varies with the number of random samples
used to produce Monte Carlo estimates of the information-based
statistics. The full analysis performed in this work completes in
approximately one hour.

1) Inference: For all inference experiments, model training
was performed as described above using Monte Carlo cross
validation with ten random train/test splits of the 4727 scans.
Maximum a posteriori (MAP) estimates from posterior distri-
butions as defined in (3) are used for all inference tasks and
integer age values are sampled at an interval of one year during
inference.

For the sake of comparison with baseline non-linear discrim-
inative models, we also trained and evaluated a multi-layer per-
ceptron (MLP) model (two hidden layers, 100 neurons per layer,
and ELU activations) and a PointNet (PN) model [42] following
the implementation of keras.io/examples/vision/pointnet/ on the
same data splits as used for the proposed NF model. The MLP
model uses the same dimensionality reduced data as the NF
model while the PN model is applied to a randomly sampled
subset of 3038 3D points from the dense surface meshes.

In order to compare the proposed model to previously pro-
posed Gaussian modelling approaches, and to test if non-
Gaussian models are valuable in this application, NF models
were trained and evaluated with the affine coupling blocks
removed from the architecture shown in Fig. 1. This ablated
architecture (LinearNF) has a bijection g(·; y, θ) that is linear
with respect to the input (though not with respect to the condition
variable y) so that the induced distribution pF (f |y) is always
Gaussian.

2) Face Generation: The NF model used to generate qualita-
tive face generation results (Figs. 3, 4) as well as for analysis of
variation results (Section III-C3) was trained as described above
but using the full set of scans described in Section III-A.

For a quantitative comparison with another non-linear gener-
ative model, we trained a conditional variational auto-encoder
(cVAE) on the same, dimensionality reduced, face data as the
proposed NF model to represent the same conditional distribu-
tion of facial morphology pF (f |y). The auto-encoder has a latent
space dimensionality of nsub and an isotropic Gaussian latent
prior (the same as the NF model). The encoder and decoder
are densely connected neural networks (two hidden layers, 100
neurons per layer, and ELU activations).

We quantitatively compared the generative capabilities in
terms of cross-validated likeness scores. Likeness scores are
calculated by comparing the distributions of intra-class Eu-
clidean distances, and between-class distances (where class
indicates whether the data is real or model generated) using the
Komolgorov-Smirnov (KS) distance. The larger of the two KS
distances between intra-class Euclidean distances and between
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Fig. 3. Top Row: Faces corresponding to the origin of the latent space of a cVAE which, unlike the proposed NF model, may not represent the
mode of the conditional distribution. Middle Row: modal faces for different syndrome classes at different ages produced by the NF model. Bottom
Row: a random sample from the latent space zrand mapped forward through the NF using different syndrome and age conditions. The sex condition
was fixed to male.

Fig. 4. Left column: counterfactual faces for the example subject
shown in Fig. 2. Right column: A color map of the shape differences
(excluding size information) between original and counterfactual faces
overlaid on the original face. Blue indicates an area where the counter-
factual shape protrudes outwards compared to the original shape, and
red indicates the opposite. The true demographics of the subject are
ytrue ={27, Male, Unaffected}. The counterfactual demographics shown
in each row are ytop ={10, Male, Unaffected}, ymiddle ={27, Female,
Unaffected}, and ybottom ={27, Male, Down}.

class Euclidean distances is subtracted from 1 to compute the
likeness score. Therefore, a score closer to 1 is better. Like-
ness scores have been shown to capture important performance
aspects of generative models such as creativity, diversity, and
inheritance [43]. We compute likeness scores for different de-
mographics using the first of the ten random train/test data splits.
All scores were computed using 10,000 random samples.

3) Variation Analysis: All estimates of KL divergence and
differential entropy (Eqs. (5) and (6)) were produced using
50,000 random samples from the latent prior pZ(z), which we
found sufficient to produce stable results. KL divergence and
differential entropy are always expressed in units of nats/dim.
Units of information (nats or bits) per dimension are commonly
used to evaluate non-Gaussian generative models [34], [44].

Unlike the case of discrete entropy where there is a natural
canonical reference measure (the counting measure), there is
no canonical reference measure for differential entropy. Here,
we use the Lebesque measure over Rnsub and express all facial
measurements f using units of millimeters. Despite this added
complexity, differential entropy can still be interpreted as a mea-
sure of relative uncertainty or magnitude of variation. A uniform
distribution over a unit cube in Rnsub with volume 1mmnsub

will have a differential entropy of 0nats/dim. More localized
distributions will have a smaller (negative) differential entropy
and less localized distributions will have a larger (positive)
differential entropy. KL divergence has the same interpretation
(relative entropy or information gain) for both continuous and
discrete probability distributions.

IV. RESULTS

A. Inference

1) Syndrome Inference: Table I summarizes the results of
the inference experiments. The overall accuracy of the NF model
is 71%. For 92% of unaffected subjects, the correct unaffected
class was selected by the model. Results vary widely for the
syndrome classes, which is an effect regularly seen in studies
that include a large number of syndrome classes [4]. Averaged
across all 47 syndrome classes in the analysis (excluding un-
affected subjects), the mean sensitivity was 43%. Compared to
the Gaussian model (LinearNF), the non-Gaussian model (NF)
showed improved overall accuracy (71% vs. 69%) and mean
syndrome sensitivity (43% vs. 38%).
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TABLE I
TOP-1 OVERALL ACCURACY AND PER-SYNDROME SENSITIVITIES FOR THE

SYNDROME INFERENCE TASK (%)

The MLP results were generally similar to those of the NF
model, but come without the additional interpretability and
multi-functionality of the proposed NF model. Overall accuracy
and mean syndrome sensitivity were both within two percentage
points. The MLP model struggled with the same syndromes
as the NF model (Coffin Siris sensitivity 0% and Pierre Robin
Sequence sensitivity 7%), and performed well on similar syn-
dromes (Down sensitivity 79%, Cockayne sensitivity 71%,
Williams sensitivity 64%). The sensitivity of the MLP model
identifying unaffected individuals was slightly better (96%).

The PointNet model performed the worst overall as well as
for each individual syndrome. We believe this is primarily an
issue of the high input dimensionality and low sample size
(as low as 20 subjects for some syndromes). The comparison
between the PointNet model and the MLP model (which uses

Fig. 5. The differential entropies h(pF (f |yi)) for different values of
agei and sexi with syndi fixed (our model assumes that differential en-
tropy is invariant with respect to syndrome class). In general, total facial
morphological variation is greater for males and older demographics.

Fig. 6. The KL divergences DKL(pF (f |yi)||pF (f |yj)) for different val-
ues of agei with agej = agei + 1. The syndrome condition was fixed
(syndi = syndj = Unaffected). In general, facial morphology changes
fastest at very young ages and during puberty.

dimensionality reduced data) suggests that the manifold pro-
jection step in our approach provides useful regularization for
this setup. Furthermore, the PointNet model and other similar
models [45] were designed for more challenging tasks in which
mesh vertex ordering is unknown and variable. Mesh topology
and vertex order are fixed in our dataset using registration to
a reference mesh (see section II-A). This property of vertex
permutation invariance may also contribute to the inferior perfor-
mance of PointNet. Like the MLP and most other discriminative
models, PointNet has no ability to generate 3D facial surfaces,
and no ability to analyze inter- or intra-demographic facial
variation.

2) Age Inference: The mean absolute error between pre-
dicted and true age was 4.4 years for unaffected subjects and
11.9 years for patients with syndromes. For unaffected subjects,
the mean standard deviation of the posterior age distribution
was 3.5 years, indicating that the model tends to be slightly
overconfident in its age estimates. In general, age estimation
was more accurate for younger subjects. This trend was also
mirrored in the variation analysis results (see Fig. 6).

3) Sex Inference: 91% of unaffected subjects and 66% of
patients with syndromes were classified as the correct sex using
MAP estimation. Sex estimation was more accurate for older
subjects most likely because sex-specific facial features develop
later in life. This trend was also mirrored in the variation analysis
results (see Fig. 7).

B. Face Generation

1) Demographic Specific Face Generation: Fig. 3 shows
maximally probable faces (modes) and random samples pro-
duced by the NF model for a selection of different syndrome and
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Fig. 7. The KL divergences DKL(pF (f |yi)||pF (f |yj)) between sex
specific distributions at different ages (agei = agej ). The syndrome
condition was fixed (syndi = syndj = Unaffected). In general, sex di-
vergences increase with age until adulthood.

TABLE II
LIKENESS SCORES FOR DIFFERENT GENERATIVE MODELS AND DIFFERENT

DEMOGRAPHICS

age conditions. The modes and samples exhibit facial features
characteristic of the different syndromes and age groups (e.g.,
small faces for young ages, wide faces for Down syndrome, long
faces for Sotos syndrome). Additional visualizations of samples
and modes from the NF model are provided as supplementary
files (see Appendix II).

Fig. 3 also shows faces generated using a cVAE model. These
faces correspond to the origin of the latent space which, unlike
the proposed NF model, may not represent the mode of the con-
ditional distribution. Although these faces lack a probabilistic
interpretation, they also exhibit features characteristic of the
different syndrome classes. The effect of age appears to be less
prominent compared to the NF modes.

Table II shows cross-validated likeness scores for selected
demographics that are well represented within our data. Both
NF models outperform the cVAE model for all demograph-
ics included in our evaluation. The Gaussian (LinearNF) and
non-Gaussian (NF) flow models performed similarly overall.
NF showed small improvements over LinearNF in some demo-
graphics and was slightly outperformed in other demographics.
In general, likeness scores are better for demographics with more
training and evaluation subjects.

2) Counterfactual Face Generation: Fig. 4 shows counter-
factual faces produced using an example subject previously
unseen by the model. By contrasting the counterfactual faces
with the original face, we can see what information the
model uses to make inferences. With respect to this exam-
ple subject (ytrue ={27 yrs, Male, Unaffected}), the model
expects that: a younger subject would have a smaller face
with a less pronounced nose and chin, a female subject would
have a smaller face and less pronounced brow, nose, and
chin, and a Down syndrome patient would have a wider,
flatter face.

C. Variation Analysis

1) Differential Entropy Analysis: We first calculated the dif-
ferential entropy of the marginal distribution of facial mor-
phology h(pF (f)) = 483nats/dim, marginalizing the condi-
tion variables by integration with respect to the naïve joint
distribution of condition variables (see (4)). Next, we calcu-
lated the conditional differential entropy of facial morphol-
ogy given all condition variables h(pF (f |y)) = 424nats/dim.
Thus, differential entropy decreased by 12% on average when
age, sex, and syndrome diagnosis are specified. This result
indicates that intra-demographic facial variation is larger than
inter-demographic variation with respect to age, sex, and syn-
drome class. Furthermore, we computed partially conditional
entropies h(pF (f |synd)) = 460nats/dim, h(pF (f |age)) =
463nats/dim, and h(pF (f |sex)) = 478nats/dim. These re-
sults indicate that the sex condition has the least effect on facial
morphology compared to the other condition variables.

Fig. 5 shows the differential entropies of age- and sex-specific
distributions. In general, total facial morphological variation was
greater for males and older demographics. Our model architec-
ture assumes that differential entropy is invariant with respect to
syndrome class.

2) KL Divergence Analysis: Fig. 6 shows the KL-
divergences induced by increasing the age condition by 1 a for
unaffected subjects of both sexes at different ages. These values
reflect the rate at which the distribution of facial morphology
changes at different ages across both sexes. In general, facial
morphology changes faster at younger ages. This pattern is also
mirrored in the age inference experiments where the MAP age
estimates are more accurate for younger subjects. Some other
interesting patterns are the spikes in KL divergence that occur
around 10-15 years. These are likely attributable to the onset of
puberty; the female spike happens slightly earlier and the male
spike continues more into the late teens and early twenties.

Fig. 7 shows KL-divergences between sex-specific
distributions at different ages. In general, sex divergences
increase with age up until 25 to 30 years after which they
gradually decline. This pattern is also mirrored in the sex
inference experiments where the MAP sex estimates are more
accurate for older subjects.

Overall, the variation analysis results quantitatively show
that the model has learned patterns of facial variation that are
in agreement with what is generally known about syndromic
facial morphology, facial development, and sexual dimorphism.
The results provide an additional perspective from which clin-
icians can evaluate patterns (e.g., the development of sexually
dimorphic facial features with age) that are also observed in the
inference and generation results.

V. DISCUSSION

For the task of predicting genetic syndrome diagnosis from
a 3D facial surface scan in a challenging setup with 48 classes,
the model performed very well (overall top-1 accuracy of 71%,
and a mean sensitivity of 43% across all syndrome classes).
It is important to note that the face-based computer-assisted
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diagnosis of genetic syndromes is an extremely difficult problem
as there is a large number of syndrome classes and there often
exists a considerable overlap between the facial morphological
distributions associated with different genetic syndromes. A
particularly useful property of our probabilistic model is its
inherent ability to directly quantify and visualize those overlaps
(see Figs. 6 and 7).

Aside from the domain-specific challenges mentioned above,
we believe that the classification results are also affected by the
sample sizes within our training data. For some classes, only
twenty patients were available (e.g., Coffin Siris), which is a
very small sample for deep learning applications. Performance
for those minority classes could likely be improved by collecting
additional data. Due to the rarity of genetic syndromes and
the large number of different syndromes, data collection is
challenging within this domain.

As a result of patient anonymization processes, we do not have
the ability to perform a direct comparison with 2D image-based
approaches using this data. We believe that a future study com-
paring 2D and 3D facial representations for syndrome diagnosis
would be highly valuable.

Despite these limitations, we believe that our results are
highly clinically relevant and the models very useful. Compared
to discriminative baseline models, the syndrome classification
performance of the proposed NF model is similar (MLP) or
better (PointNet) while being far more interpretable and multi-
functional. In addition to inferential tasks, the NF model is able
to perform multiple generative tasks (sample, mode, and coun-
terfactual generation) as well as extensive analyses of inter- and
intra-demographic facial variation that the MLP and PointNet
models cannot perform. Compared to a Gaussian generative
model (LinearNF), our non-Gaussian architecture achieves a
higher overall accuracy and mean syndrome class sensitivity.
We also expect the more flexible, non-Gaussian model to bene-
fit more from a larger training sample size. Compared to the
limited number of previous studies also specifically aiming
at differentiating a large number of syndrome classes using
3D facial data such as [4], the syndrome inference results
are competitive. However, it is very challenging to compare
scores that are generated using different training and validation
data. Furthermore, the generative results and information-based
statistics produced by our models provide additional insight
into demographic-specific facial morphological variation that
may be useful to clinicians to study characteristics of different
syndromes.

VI. CONCLUSION

In this work, we proposed a novel 3D facial surface model,
which can be used to infer syndrome diagnosis and other demo-
graphic variables given a high-resolution 3D facial scan. With
the goal of maximizing model interpretability within a single,
flexible deep learning framework, an invertible normalizing flow
architecture was designed that discards the commonly employed
Gaussian assumption and can seamlessly handle high dimen-
sional 3D data as well as a large number of syndrome classes.
The proposed model is the first non-Gaussian 3D facial shape
model with the ability to (1) infer syndrome diagnosis and other
demographic variables given a high-resolution 3D facial surface

scan, (2) generate modal, randomly sampled and counterfactual
3D faces using demographic information, and (3) analyze the
magnitude of facial variation between and within demographic
groups (e.g., males vs. females) in a fully probabilistic way. Our
evaluation demonstrates that a unified invertible architecture
achieves competitive inferential performance while enabling
much greater interpretability through multiple mechanisms that
do not require any additional model training or modification.
To the best of our knowledge, a deep invertible model of 3D
facial morphology has never been proposed before, neither for
general purposes in computer vision nor specifically for genetic
syndromes. Furthermore, this work, for the first time, describes
the use of invertible flow models to analyze the magnitude
of inter- and intra-demographic morphological variation using
entropy-based statistics. We believe that invertible models such
as the one presented in this work have the potential to greatly in-
crease model interpretability in the domain of medical diagnosis.
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