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Abstract

The sense of taste is fundamental to our ability to ingest nutritious substances and to detect and avoid potentially toxic
ones. Sensory taste buds are housed in papillae that develop from epithelial placodes. Three distinct types of gustatory
papillae reside on the rodent tongue: small fungiform papillae are found in the anterior tongue, whereas the posterior
tongue contains the larger foliate papillae and a single midline circumvallate papilla (CVP). Despite the great variation in the
number of CVPs in mammals, its importance in taste function, and its status as the largest of the taste papillae, very little is
known about the development of this structure. Here, we report that a balance between Sprouty (Spry) genes and Fgf10,
which respectively antagonize and activate receptor tyrosine kinase (RTK) signaling, regulates the number of CVPs. Deletion
of Spry2 alone resulted in duplication of the CVP as a result of an increase in the size of the placode progenitor field, and
Spry12/2;Spry22/2 embryos had multiple CVPs, demonstrating the redundancy of Sprouty genes in regulating the
progenitor field size. By contrast, deletion of Fgf10 led to absence of the CVP, identifying FGF10 as the first inductive,
mesenchyme-derived factor for taste papillae. Our results provide the first demonstration of the role of epithelial-
mesenchymal FGF signaling in taste papilla development, indicate that regulation of the progenitor field size by FGF
signaling is a critical determinant of papilla number, and suggest that the great variation in CVP number among mammalian
species may be linked to levels of signaling by the FGF pathway.
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Introduction

Taste sensory capability is mediated by aggregates of receptor

cells, called taste buds, which reside within the oral and

pharyngeal cavities. The majority of taste buds in mammals

reside on the tongue in epithelial-mesenchymal specializations

termed gustatory papillae. In the rodent tongue, the smaller

fungiform papillae, each of which possesses a single taste bud, are

found in a distributed array on the anterior tongue. By contrast,

the larger bilateral foliate papillae and a single midline

circumvallate papilla (CVP) each house hundreds of buds and

reside on the posterior tongue (Figure 1A). Recently, there has

been increasing recognition that anterior fungiform taste buds

differ from those of the posterior CVP in terms of both gene

expression and taste function [1–4].

In recent years, significant progress has been made in defining

the molecular regulation of fungiform development. Fungiform

papillae initially form as placodes that subsequently undergo

epithelial morphogenesis and acquire a mesenchymal core [5] in a

process that is similar to morphogenesis of other vertebrate

epithelial specializations, such as hair, teeth, and mammary glands

[6,7]. The development of these other organs requires signaling

between epithelium and mesenchyme, suggesting that such

epithelial-mesenchymal interactions are also involved in patterning

and morphogenesis of taste placodes. However, expression of all of

the key signaling factors implicated in taste placode development –

including Sonic Hedgehog (SHH), Bone Morphogenetic Proteins

(BMPs), Epidermal Growth Factor (EGF), and WNTs – is

restricted to the epithelium [8–15]. Thus, to date, no inductive,

mesenchyme-derived factor involved in taste development has

been identified.

Despite its importance in taste function and its status as the

largest of the taste papillae, very little is known about the genes

involved in the development of the CVP. Like fungiform placodes,

the CVP forms as an initial epithelial thickening that undergoes

complex morphogenesis to form a large papilla. However, it

appears that genes known to regulate fungiform development do

not function similarly in development of the CVP. For example,

inhibition of SHH results in more and larger fungiform placodes,

but has no effect on the CVP [11]. In addition, BMP7 and its

PLoS Genetics | www.plosgenetics.org 1 June 2011 | Volume 7 | Issue 6 | e1002098



antagonist follistatin have significant functions in fungiform

development, but the CVP appears unaffected by inactivation of

either gene [16]. These differences may be ascribed to the distinct

embryonic origins of the anterior tongue, which is thought to be

derived from ectoderm, whereas the posterior tongue likely has

endodermal origins [4].

Expression of several Fibroblast Growth Factors (FGFs) and

their receptors has previously been detected in the developing

tongue [17]. Therefore, we hypothesized that Sprouty (Spry)

genes, which antagonize several receptor-tyrosine kinase (RTK)

signaling pathways including those triggered by FGFs [18–20],

may play a role in the development of taste papillae. Originally,

spry was identified as a regulator of tracheal branching in Drosophila

[21], and it was later found that three of the four mouse Sprouty

genes (Spry1, Spry2, and Spry4) are expressed during embryonic

development [22,23].

Here, we used mouse genetic models to show that FGF signaling

is required for CVP formation. We found that Spry1 and Spry2

antagonize signaling by FGF10 to restrict the size of the progenitor

field of the circumvallate (CV) placode, such that loss of Sprouty

function results in a dramatic expansion of the CV placode as it

first forms. In adult Spry2 mutants, a striking and complete

duplication of the CVP emerges, whereas embryos lacking both

Spry1 and Spry2 have multiple CVPs. Our findings thus represent

the first example of molecular genetic regulation of taste organs in

the posterior tongue. We found that Fgf10, which is expressed

exclusively in the mesenchyme underlying the CV placode, is

required for formation of the CVP, and thus we provide the first

Figure 1. Deletion of Spry2 leads to a duplication of the CVP in the posterior tongue. (A) Cartoon showing location of gustatory papillae in
the rodent tongue. (B,C) In situ hybridization staining of Shh. Wild-type mice possess a single CVP in the posterior tongue, whereas the CVP is
duplicated in Spry22/2 mice (arrowheads). (D,E) SEM images of the tongue at E14.5. Scale bar, 500 mm. (F,G) DAPI fluorescence staining shows that the
two CVPs (arrowheads) persist into adulthood in Spry22/2 mice. (D’-G’) Higher magnification images of boxed areas. (D’,E’) Scale bar, 25 mm.
doi:10.1371/journal.pgen.1002098.g001

Author Summary

The sense of taste is important for an animal’s ability to
survive and thrive, because it enables discrimination
between nutritious substances and toxins. Taste buds are
housed largely on the tongue in structures called papillae;
of the three types of gustatory papillae, the circumvallate
papilla (CVP) is the largest. In rodents, a single CVP is
located in the posterior midline of the tongue housing
hundreds of taste buds, whereas in other mammals up to
dozens of CVPs can be found. However, despite the great
variation in the number of CVPs in mammals, its status as
the largest of the taste papillae, and its importance in taste
function, very little is known about its development. We
identified members of the FGF signaling pathway as
determinants of CVP number. We propose that perturba-
tions to the FGF signaling pathway may have been
involved in the dramatic differences in CVP number that
arose during mammalian evolution.

FGF Signaling Regulates CVP Development
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example of an inductive, mesenchymal signal involved in

specifying the epithelial domain of a developing taste papilla.

Further, while FGF10 signaling drives CVP development and

Spry1 and Spry2 repress this process, fungiform taste papillae are

oppositely affected by the loss of these genes: Fgf102/2 tongues

appear to possess more and larger fungiform papillae, and the loss

of Sprouty genes results in fewer fungiform papillae. Thus, these

results demonstrate that molecular mechanisms regulating devel-

opment of anterior and posterior taste organs differ considerably.

Finally, we postulate that the role of FGF signaling in defining the

size of the CV progenitor field in mice may underlie the large

variation in CVP number across mammalian taxa, and that

changes in FGF signaling during evolution may have caused

expansion of the initial progenitor field to allow formation of

multiple CVPs in some species.

Results

Deletion of Spry2 leads to a duplication of the CVP
Wild-type mice possess a single CVP in the midline of the

posterior tongue; foliate papillae reside on the lateral tongue and

multiple fungiform papillae populate the anterior tongue

(Figure 1A, 1B). In Spry22/2 mice, we observed a duplication of

the CVP in the anterior-posterior orientation at embryonic day (E)

14.5 using Shh expression as a marker (Figure 1C). By contrast,

fungiform placodes in the anterior tongue, which also express Shh,

were significantly reduced in number (6164.37 in wild-type versus

3362.02 in Spry22/2 embryos; p = 0.0002; n = 6 embryos per

genotype). Because alterations in fungiform papilla development

had been reported in other mutants [9–15], we chose to pursue the

novel CVP duplication phenotype. The presence of two CVPs in

the embryonic tongue was confirmed using scanning electron

microscopy (SEM; Figure 1D-1E’). To test whether the duplicated

CVP persisted into adulthood, we used DAPI staining in adult

tongues and again identified two discrete papillae (Figure 1F-1G’).

Notably, both CVPs in Spry22/2 mice house fully differentiated

taste buds containing the three types of taste receptor cells, and

both showed positive staining for b3-tubulin, indicating that taste

buds and the papillae are innervated (Figure S1). Taken together,

these data indicate that the duplication in Spry22/2 embryos leads

to two functional adult CVPs.

To reconstruct the development of the CVP, closely staged

specimens between E11.5 to E14.5 were stained with E-

cadherin and imaged in whole-mount (Figure 2A-2N), as well

as analyzed by H&E staining of sections (Figure 2O-2X). In

wild-type embryos, CVP development was initiated shortly after

the tongue rudiment formed by fusion of the lateral lingual

swellings, and it was detected as a more compact collection of

epithelial cells at E11.5 (Figure 2A) [24]. At E12.5, a placodal

condensation was readily observable on coronal sections

(Figure 2O). Between E13 and E13.5, the wild-type placode

underwent major morphological changes as the epithelial

trenches characteristic of the CVP began to form (Figure 2P,

2Q). The growth of the trenches was coincident with the

initiation of innervation at approximately E13 (Figure S2), and

the trenches continued to grow into the mesenchyme at E14.5

(Figure 2G, 2S) [24,25].

In contrast to the wild-type, the CV placode in Spry22/2

embryos was larger at E11.5 (compare Figure 2A, 2H). Relative to

the wild-type, the mutant placode continued to grow larger both

laterally and along the anterior-posterior axis between E11.5 and

E13.5 (Figure 2B-2E, 2I-2L). By E14, two distinct structures were

observed in Spry22/2 embryos, with the anterior of the two

papillae usually appearing smaller than the posterior at E14 and

E14.5 (Figure 2M, 2N). In addition, CVPs in Spry22/2 embryos

showed a raised dome shape compared to the flatter shape of the

wild-type CVP (Figure 2R, 2S, 2W, 2X).

Several possible mechanisms could account for the duplication

of the CVP at ,E14, including a timer that causes the organ to

split at a certain point after its development starts or a threshold

that causes splitting after a critical size limit is achieved. To

address this issue, we quantified the size of the CV placode and

CVP in wild-type and Spry22/2 tongues between E13 to E14,

corresponding to the time points before, during and after CVP

duplication (Figure S2J). Relative to wild-type mice, the mutant

CV placode was already significantly larger at E13 and E13.5, but

when CVP duplication was observed at E14, there was a further

and dramatic increase in the total area of the papillae. Thus, our

data suggest that there is a critical threshold size for the CV

placode, beyond which the placode destabilizes, leading to CVP

duplication.

The CV progenitor field is enlarged in Spry22/2 mice
Sox2 is one of the earliest markers of taste placodes and is

required for taste bud development [26]. Sox2 expression was

expanded in the placode domain in both anterior-posterior and

lateral directions in Spry22/2 embryos compared to wild-type

littermates at both E11.5 (data not shown) and E12.5

(Figure 3A-3B’). Next, we analyzed the expression of three

additional factors that mark the early placode: Shh, Bmp7, and

Wnt10b (Figure 3C-3H’). Shh has previously been shown to be

expressed in the developing CVP [9,27], and in fungiform

placodes, Shh is expressed specifically by taste bud progenitors

[28]. Bmp7 and Wnt10b have also been implicated in

development of fungiform papillae [15,16]. The expression

domains of all these markers were expanded in the CV placode

of Spry22/2 embryos relative to wild-type (Figure 3C-3H’). We

quantified the differences in expression levels by qPCR, and

interestingly, whereas Sox2 and Bmp7 levels were strongly

upregulated in the mutants, consistent with the expanded

expression domains seen in whole mount, Shh and Wnt10b

expression levels were not dramatically different in the mutants

(Figure S3A). This is consistent with the decreased intensity of

Shh and Wnt10b staining despite an increased CV placodal

domain size (Figure 3D, 3D’, 3H, 3H’).

We next asked whether there was a difference in the number of

cells in the placode between wild-type and mutant. We quantified

the number of cells in the CV placode of Spry22/2 embryos

relative to wild-type littermates at E12.5 from three-dimensional

confocal images of E-cadherin-positive stained cells (Figure 3I-3K).

We counted cells in 10 mm intervals beginning at the deepest tip

of invaginated cells using ventral views; the borders of the placode

were defined by the invagination. This analysis showed that

already by the mid-placode stage, the mutant placode had almost

twice as many cells as the wild-type. Because differences in

proliferation or cell death could account for the larger placode and

the morphogenetic abnormalities in the CVPs of Spry2 mutants,

we assayed proliferation by PCNA staining (Figure 3L-3N), and

cell death by TUNEL staining (Figure S3B-S3D). We detected no

differences between wild-type and mutant CV placode at E12.5

for either assay, suggesting that a larger number of cells was

recruited into the placode at the earliest stages of placodogenesis.

Thus, our data indicate that inactivation of Spry2 leads to a larger

progenitor field, as detected by multiple molecular markers, such

that the duplication in the Spry2 mutant results from recruitment of

more cells into the CV placode at the earliest stages of its

development.

FGF Signaling Regulates CVP Development
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Spry1 and Spry2 are co-expressed in the CV placode, and
hypersensitivity to FGF signaling is detected in Spry2
mutants

Because Sprouty genes are often co-expressed during develop-

ment [23,29], we assayed for expression of Spry1, Spry2, and Spry4

in CV placodes at E12.5 (Figure 4A-4C); Spry3 was not analyzed

due to its lack of expression in embryonic craniofacial tissues [23].

We found that Spry1 and Spry2 were both expressed in the

epithelium of the CV placode at E12.5, whereas no expression was

observed for Spry4 (Figure 4A-4C).

The expression of Etv5 (Erm), which is a target of FGF signaling

[30], was upregulated in Spry22/2 embryos (compare Figure 4D,

4E), consistent with increased FGF signaling observed with

Sprouty loss-of-function in other developmental contexts [31–

34]. To quantify expression levels, RNA was extracted from the

area containing the CV placode at E12.5 and analyzed by qPCR,

and a three-fold increase in Etv5 was observed (Figure 4F). As

expected, essentially no Spry2 expression was detected in the Spry2

nulls, but interestingly, Spry1 expression was dramatically

increased in Spry22/2 mice (Figure 4F). This upregulation is

consistent with the known role of Sprouty genes as FGF targets

[21,23], and it suggested that increased expression of Spry1 may

serve a compensatory role in Spry22/2 mice. qPCR showed that

Spry4 was expressed at very low levels, with no detectable

difference between wild-type and Spry22/2 littermates (data not

shown).

Fgf10 is required for CVP development and is
antagonized by Spry2

The epithelial expression of Spry1, Spry2, and Etv5, all of which

are expressed in response to RTK activity [21,23,30], strongly

suggested the presence of a mesenchymal RTK ligand that signals

to the epithelium. To identify such a ligand, we surveyed the

expression of a number of candidate RTKs and their cognate

ligands by ISH, including Fgfr1-4, Egfr, Fgf7, Fgf8, Fgf9, and Fgf10

(data not shown). Of the ligands we examined, only Fgf10 was

expressed in the mesenchyme subjacent to the epithelium along

the midline of the posterior tongue at E11.5 and E12.5 (Figure 5A-

5B’). Two FGF receptors, Fgfr2 and Fgfr3, were also expressed in

the CV placode, whereas no expression of Fgfr1 or Fgfr4 was

detected (Figure 5C-5F).

To further test the role of FGF signaling in CVP development,

we isolated tongues from wild-type embryos at E11.5 and E12.5

and grew them in vitro either in the absence or presence of SU5402

[35], a potent FGF receptor inhibitor (Figure S4). In the absence

of SU5402, we found the formation of a single CVP. The

inhibition of FGF signaling by SU5402 led to the absence of the

CVP in tongues cultured at E11.5 and to either an absent or a

malformed CVP in tongues cultured at E12.5. These observations

demonstrate the requirement of FGF signaling during CVP

formation at E11.5 and to a lesser extent at E12.5.

Because Fgf10 was expressed directly underneath the

developing CV placode, we hypothesized that the ligand

encoded by this gene may play a role in CV development,

and therefore we examined the CVP in Fgf102/2 embryos.

Strikingly, the deletion of Fgf10 led to the complete absence of

the CVP (Figure 5H-5H’’), indicating that this gene plays a

critical inductive role in development of this structure. Next, we

reasoned that the combined deletion of Fgf10 and Spry2 may

balance each other and rescue CVP development, and indeed,

we found a single CVP in Fgf102/2;Spry22/2 mice (Figure 5I-

5I’’). This result also implies the presence of a yet-unknown

secondary ligand that can fulfill the function of FGF10 if the

epithelium is rendered hypersensitive to RTK signaling by

inactivation of Spry2. Taken together, our data indicate that the

FGF signaling pathway is critical for proper CVP development

and that it determines the final number of CVPs.

Figure 2. Development of the CVP in wild-type and Spry22/2 mice. (Inset) Cartoon depicting the planes of observation. (A–N) E-cadherin
(E-CAD) immunofluorescence staining of CV placodes and papillae in wild-type (A–G) and Spry22/2 (H-N) mice. (O–X) H&E stains of coronal sections of
the single CV placode and papilla in wild-type and the proximal CV placode and papilla in Spry22/2 mice. The size of the papilla was quantified
between E13 to E14 (D–F, K–M; 61023 um). Arrowheads indicate developing trenches. Scale bars, 50 mm.
doi:10.1371/journal.pgen.1002098.g002

FGF Signaling Regulates CVP Development
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Combined deletion of Spry1 and Spry2 leads to multiple
CVPs

Based on the overlapping expression of Spry1 and Spry2 in the

CV placode and the upregulation of Spry1 in Spry22/2 embryos

(Figure 4F), we hypothesized that these two family members may

be partially redundant. We therefore generated and analyzed

Spry12/2 as well as Spry12/2;Spry22/2 (DKO) embryos. No

difference in the number or morphology of the CVP was detected

in Spry12/2 embryos (data not shown), indicating that Spry1 is not

required for CVP development if Spry2 is present. In contrast,

CVPs from DKO embryos were dramatically abnormal relative to

control Spry1+/2;Spry2+/2 (DHet) littermates, whose tongues were

indistinguishable from those of wild-types both as embryos and as

adults (data not shown). At E12.5, the expression domains of Etv5

and Sox2 were expanded in the CV placodes of DKO mice relative

to DHet littermates (Figure 6A, 6B, 6F, 6G). The expanded

expression domains in the DKOs were greater than those seen in

Spry22/2 mice (compare to Figure 4D, 4E and Figure 3A-3B’). At

later stages, in contrast to the single duplication seen in Spry22/2

mice, the DKO embryos had multiple CVPs (Figure 6C, 6E, 6H,

6J). The multiple CVPs in DKO embryos were smaller than the

single CVP in controls and showed pronounced raised domes

(Figure 6D, 6I) similar to Spry22/2 embryos (Figure 2S, 2X).

Immunofluorescence staining of b3-tubulin revealed innervation

of the multiple CVPs (Figure S5).

Discussion

Of the numerous gustatory papillae, very little is known about

the development of the CVP, despite the great variation in CVP

number in mammals, its importance in taste function, and its

status as the largest of the taste papillae. Most of the studies on

gustatory organ and taste development have focused on fungiform

papillae, and it is probably for this reason that significant genetic

abnormalities of the CVP have not yet been reported in mice.

Here, we report several findings: first, FGF signaling plays a key

role in the regulation of taste papilla development; second, FGF10

is an inductive, mesenchyme-derived factor required for CVP

development; third, the regulation of the progenitor field size by

Figure 3. The CV progenitor field at E12.5 is expanded in
Spry22/2 mice. (A–H) Dorsal view of the expression of Sox2, Shh, Bmp7,
and Wnt10b in wild-type and Spry22/2 littermates. Scale bar, 50 mm.
(A’–H’) Coronal sections of A–H. Scale bar, 50 mm. (I,J) Sagittal views of
the CV placodes stained with E-cadherin show an expansion of the
placode in the anterior(A)-posterior(P) orientation in Spry22/2 mice.
Scale bar, 20 mm. (K) Quantification of the total number of cells in the
CV placode. (L,M) Proliferating cells were detected by PCNA staining in
coronal view. Scale bar, 20 mm. (N) The percentage of PCNA-positive
cells in the CV placode at E12.5. * p,0.01. WT, wild-type; S22/2, Spry22/2.
doi:10.1371/journal.pgen.1002098.g003

Figure 4. Spry1 and Spry2 are co-expressed in the CV placode and increased FGF signaling is detected in Spry2 mutants. (A–C)
Expression of Spry1, Spry2, and Spry4 in the CV placode of wild-type mice. (D,E) Expression of Etv5 in the CV placode of wild-type and Spry22/2 mice.
(F) qPCR analysis of the expression profiles of Etv5 and Sprouty genes in the posterior tongue of wild-type and Spry22/2 mice at E12.5. Scale bar,
20 mm. **, p,0.001.
doi:10.1371/journal.pgen.1002098.g004

FGF Signaling Regulates CVP Development
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Sprouty genes is a critical determinant of CVP number. Finally,

we postulate that the great variation in CVP number among

mammalian species may be linked to alterations in the genetic

dosage of agonists and antagonists in the FGF signaling pathway.

Antagonism between mesenchymal FGF10 and epithelial
Sprouty genes controls CVP number

Antagonism of FGF signaling by Sprouty genes occurs during

development of a number of organs [31–34]. Because FGFs and

their receptors had previously been detected in the developing

tongue [17], we hypothesized that Sprouty genes, which modulate

several RTK signaling pathways including those triggered by

FGFs [18–20], may play a role in taste papillae development.

Whereas deletion of Spry2 led to a duplication of the CVP, Fgf102/2

mice showed a complete loss of the CVP, and importantly, CVP

development was rescued in compound Spry22/2; Fgf102/2

mutants. These results confirm the specific antagonism of FGF10

signaling by SPRY2 and establish the importance of the FGF

signaling pathway in determining CVP number. Additionally, the

results with the Spry22/2;Fgf102/2 mutants indicate the presence of

an unknown, secondary factor; such a factor could induce CVP

formation in lieu of FGF10 when the epithelium is hypersensitive to

RTK signaling due to the absence of Spry2.

Because of the overlapping expression profiles of Spry1 and

Spry2, and the upregulation of Spry1 in the Spry22/2 CV placode,

we generated Spry12/2; Spry22/2 embryos. We observed multiple

Figure 5. Fgf10 is required for CVP development and is antagonized by Spry2. (A–B’) Expression of Fgf10 in the CV placode of wild-type
mice (arrowhead). Dashed line depicts the coronal plane of section for A’ and B’. (C–F) Expression of FGF receptors (Fgfr1-4) in coronal sections. (G–I’’)
Genetic rescue of the loss of CVP phenotype in Fgf102/2 mice (H) by deletion of Spry2 (I) as visualized by E-cadherin immunofluorescence staining.
(G’–I’) Higher magnification views of boxed areas. (G’’–I’’) H&E staining of coronal sections through the CVP. Scale bars, 25 mm.
doi:10.1371/journal.pgen.1002098.g005

Figure 6. Formation of multiple CVPs in Spry12/2;Spry22/2 (DKO) mice. (A,B,F,G) Dorsal views of the expression patterns of Etv5 and Sox2 in
Spry1+/2;Spry2+/2 (DHet) and DKO mice. (C,H) Multiple CVPs in the anterio-posterior direction were observed in DKO mice visualized by E-cadherin
immunofluorescence staining (arrowheads). Scale bar, 50 mm. (D,I) H&E staining of coronal sections through the CVP as indicated by dashed lines in C
and H. Scale bar, 25 mm. (E,J) Multiple, presumptive CVPs visualized by SEM are indicated by dashed circles. Scale bar, 50 mm.
doi:10.1371/journal.pgen.1002098.g006

FGF Signaling Regulates CVP Development
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CVPs along the A-P axis in the compound mutant embryos,

demonstrating the redundancy of Sprouty genes, for which there is

precedent in other tissues [32], in regulating CVP development.

Although a slightly dysplastic CVP was recently reported in

ectodysplasin mutant mice [36], the phenotypes in Fgf102/2,

Spry22/2, and Spry12/2;Spry22/2 mice are the first genetic

abnormalities reported involving the regulation of CVP number.

Despite indications that mesenchyme-derived factors are

involved in lingual papillae development [5,37], the only

mesenchymal factor implicated in fungiform papillae formation

to date is follistatin, an inhibitor of BMP signaling [16]. Therefore,

FGF10 is the first inductive, mesenchyme-derived factor to be

identified in taste papilla development.

Expansion of the CV progenitor field
The duplication of the CVP at E14 in Spry22/2 embryos was

preceded by an increase in placode size. The CV placode in

mutant mice was significantly larger at E13 and E13.5 relative to

wild-type, and at E14 there was a dramatic increase in total CVP

size as duplication occurred (Figure S2J). Thus, there appears to be

a critical size threshold for the CV placode, beyond which the

placode destabilizes, resulting in splitting and duplication.

Recently, Munne et al. [38] reported that, during incisor tooth

development, the impairment of BMP4 signaling or an increase in

Activin concentration led to the destabilization of the large, single

placode and the formation of multiple incisors. Future experiments

will enable comparison of the relative roles of different signaling

pathways in maintenance of epithelial placode integrity.

The increase in placode size at E13 and E13.5 was preceded at

E11.5 and E12.5 by the expansion of the expression domains for

various genes, such as Etv5, Sox2, Shh, Bmp7, and Wnt10b. By E12.5,

the mutant CV placode already had more cells than the control, and

we did not detect any apoptosis in the CV placode or any differences

in the percentage of proliferating cells. Thus, the larger CV placode in

the Spry2 mutant appears to result at least in part from an increase in

the recruitment of CV placodal cells. At the earliest stages of placode

formation, this could potentially occur either through specification of

more placodal precursors or through migration of more cells into the

placodal domain. Future studies will be needed to distinguish between

these possibilities, but interestingly, several reports have pointed to a

role for Sprouty genes in cell migration [39–41].

In the CV placode of Spry12/2;Spry22/2 tongues, there were

further increases in the expression domains of Etv5 and Sox2 beyond

what was seen in the Spry22/2 alone, demonstrating the redundancy

of Spry1 and Spry2 in this organ (Figure 6A, 6B, 6F, 6G). The

compound deletion of Spry1 and Spry2 led to an even larger placode

(Figure 6A, 6B, 6F, 6G), which resulted in more than two CVPs.

Comparision of fungiform and CV papillae
Whereas the deletion of Spry2 led to CVP duplication, it also

resulted in a marked decrease in the number of fungiform papillae

(Figure 1B, 1C). In contrast, in Fgf102/2mice, there was an

absence of the CVP, whereas the fungiform papillae appeared to

be larger and more closely spaced (Figure 4G, 4H). Thus, Fgf10

and Sprouty genes differentially affect the anterior versus posterior

taste fields. Together with the previous studies showing effects of

SHH and BMP7 on anterior but not posterior taste fields, these

results provide further evidence for important developmental

differences between these fields [9,10,12,16]. This observation is

consistent with the notion that fungiform papillae in the anterior

tongue are derived from ectoderm, whereas the CVP is likely

derived from endoderm [4]. The diverse responses of fungiform

versus CV papillae to developmental factors have only recently

been appreciated and will require further efforts to tease apart.

Evolution of CVP number in mammals
Although most rodents, including the mouse, possess a single

midline CVP in the posterior tongue, there is great variation in

mammalian CVP number (Figure S6B, Figure S7). For example,

humans possess anywhere from 3 to 14 CVPs in an inverted V or

Y orientation [42]. Other mammals such as the hyrax [43,44] and

hippopotamus [45] possess no CVP, whereas siamang, chimpan-

zee, gorilla [46] and lemur [47] possess at least two CVPs along

the midline, in addition to varying numbers of lateral CVPs

(Figure S6A). We have shown that modifications in FGF signaling

can lead to increased or decreased numbers of CVPs. Thus, we

speculate that changes in levels of signaling through this pathway

provide an attractive candidate for producing variation in CVP

number, and in particular, for generating CVPs that are multiplied

along the midline or anterior-posterior axis. It is interesting that

both Fgf10 and Etv5, an indicator of FGF signaling, were expressed

along the midline, which correlates with anterior-posterior CVP

multiplication in Spry22/2 and Spry12/2;Spry22/2 mice.

The effect of CVP number on taste is currently unclear.

Correlation between taste sensitivity and the number of taste buds

within the CVP has been previously reported [48]. However,

because there is variation in the number of taste buds per CVP, as

well as in the number of taste cells within each taste bud [49],

there is no clear indication of what the number of CVPs reveals

about taste preferences. Whether the variation in mammalian

CVP number provides evolutionary advantages in terms of

identification of nutritious substances and detection and avoidance

of potentially toxic ones remains to be elucidated.

In 1950, Spuhler [42] postulated that the variation in CVP

number observed in humans was likely due to genetic factors

involving at least 5 multiple alleles. Our studies indicate, for the

first time, that the perturbation of a single gene such as Fgf10 or

Spry2 may be sufficient to confer the vast genetic variation in

mammalian CVP number.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the UCSF Institutional Animal Care

and Use Committee (Protocol Number: AN084146). All efforts

were made to minimize animal suffering.

Animals
Mouse lines carrying null or floxed alleles of Spry1 [31], Spry2

[34], and Fgf10 [50] or b-actin Cre transgenes [51] were

maintained and genotyped as described. Spry12/2;Spry22/2 mutant

embryos were generated by crossing b-actin Cre;Spry1+/2;Spry2+/2

males with Spry1flox/flox;Spry2flox/flox females (double mutants pro-

duced at an expected Mendelian frequency of 1:4). Tongues and

taste papillae from double heterozygous embryos (Spry1+/2;Spry2+/

2) were indistinguishable from wild-type CD-1 embryos and served

as controls. Mice were mated overnight, and the presence of a

vaginal plug indicated embryonic day (E) 0.5.

Histology
Embryonic and adult tongues were fixed overnight in 4%

paraformaldehyde at 4uC. For sections, tongues were dehydrated,

embedded in paraffin wax, and serially sectioned at 7 mm.

Histological sections were stained with haematoxylin and eosin

(H&E).
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In situ hybridization (ISH)
Whole-mount ISH using digoxigenin-labeled RNA probes was

performed according to standard protocols. RNA probes were

generated from plasmids containing fragments of Shh, Spry1, Spry2,

Spry4, Fgf10, and Sox2 or from PCR-amplified fragments of

Wnt10b and Bmp7. A 10 minute 2% H2O2 treatment was

performed on tissues E14.5 and older. Stained specimens were

incubated overnight in 30% sucrose, embedded in tissue freezing

media (Triangle Biomedical Sciences, Durham, N.C.), and

cryosectioned using a Leica CM1900 at 18 mm intervals.

Immunohistochemistry (IHC)
Whole-mount IHC was performed according to a published

protocol [52]. Rat anti-E-cadherin (1:1000; Invitrogen Cat. 1300)

or mouse anti-b3 tubulin (1:250; R&D Systems) were applied

followed by incubation in goat anti-rat AlexaFluor 555 secondary

antibody (1:250, Invitrogen). For b3-tubulin staining, the Mouse

on Mouse kit (Vectastain) was used. Specimens were counter-

stained with DAPI. For IHC on sectioned embryonic specimens

the same procedure was used after a rehydration step. For IHC on

adult tongues, tissue was processed according to a published

protocol [28] for markers of three types of taste receptor cells: type

1, rabbit anti-NTPdase2 (Nucleoside triphosphate diphosphohy-

drolase-2, 1:1000) is the ecto-ATPase of type I cells in taste buds

[53]; type II, monoclonal anti-IP3R3 (Receptor for inositol 1,4,5-

trisphosphate, 1:1000; BD Transduction) is a second messenger

that mediates the release of intracellular calcium [54]; and type III,

rabbit anti-NCAM (Neural cell adhesion molecule, 1:1000) [55].

Secondary antibody was goat anti-rabbit Alexa-488 (1:500;

Invitrogen); this was applied for 2 hours and counterstained with

propidium iodide.

Analyses of placode size, apoptosis, proliferation, and
total number of cells

For quantification of placode size, wild-type and Spry22/2

tongues between E13 and E14 were stained with anti-E-Cadherin

antibody and the area measured using ImageJ software. Apoptosis

in the CV placode at E12.5 was measured using the In situ Cell

Death Detection kit (Roche) following manufacturer’s protocol.

Proliferating cells were identified by anti-PCNA immunofluores-

cence staining or injection of 1 mg BrdU for 2 hours followed by

staining with anti-BrdU antibody (Invitrogen). Anti-PCNA stained

and total (i.e. DAPI-stained) number of cells were counted using

ImageJ software and presented as a percentage of proliferating

cells. The total number of cells in the CV placode was quantified

from confocal images of E-cadherin stained sections using

Volocity5 software (Improvision).

qPCR
qPCR reactions were performed using the GoTaq qPCR

Master Mix (Promega) in a Mastercycler Realplex (Eppendorf). All

primers were designed using PerlPrimer3 software [56]; sequences

are available upon request. qPCR conditions were as follows:

95uC, 2 minutes; 40 cycles at 95uC,15 seconds; 58uC,15 seconds;

68uC, 20 seconds; followed by a melting curve gradient.

Expression levels for the genes of interest were normalized to

levels of L19 and are presented as levels relative to wild-type.

Organ culture
Developing tongues at E11.5 and E12.5 were isolated and

cultured on 0.45 mm Millicell-HA membranes (Millipore) in F12/

DMEM medium (GIBCO/Invitrogen) containing 1% FBS, 2%

B27 culture supplement (GIBCO/Invitrogen), and antibiotics.

FGF signaling was inhibited by addition of 25 mM SU5402

suspended in DMSO (Calbiochem), and an equivalent volume of

DMSO was added to control wells. After 3 days in culture, the

tongues were fixed in 4% paraformaldehyde for 2 h and analyzed.

Microscopy
Fluorescent and bright field images were taken using a Leica

DM5000B with a Leica DFC500 camera. For confocal images, a

Leica SP5 Confocal was used.

Sample size, penetrance, and statistical analysis
Unless otherwise noted, all experiments were performed

independently in triplicate on at least three different specimens

(N$3), and when applicable, presented as an average 6 standard

deviation. Unpaired Student t-test was used to determine p-values

and p,0.01 was deemed to be significant. The CVP phenotype

observed in Spry2 null mice was 100% penetrant (n.12); the loss of

CVP in Fgf10 null mice was observed in 100% of the mice (n = 6),

however, there were indications of small trenches or invaginations

(although absence of innervation) in 66% of the embryos; the

rescue of the single CVP in the double Fgf10;Spry2 null mice was

100% penetrant (n = 4); the presence of multiple (i.e. $3) CVPs in

Spry1;Spry2 null mice was 86% penetrant (n = 6). The Fisher exact

probability test was used to determine the p-values of the tongue

culture experiments.

Supporting Information

Figure S1 CVP taste buds are innervated and are comprised of

three types of taste receptor cells. Cartoons depict the sagittal

views of figure. (A-F) Immunofluorescence staining (green) in wild-

type and Spry22/2 mice show the presence of the three taste

receptor cell types in the CVPs. Arrowheads point to the two

CVPs in Spry22/2 mice. Scale bar, 100 mm. (G,H) b3-tubulin

immunofluorescence staining shows the innervation of both CVPs

in sagittal sections in tongues of Spry22/2 mice. Scale bar, 10 mm.

(PDF)

Figure S2 Innervation and placode size of the CVP. (A-I) H&E

staining of coronal sections of the developing CVP between E12.5

and E13.5. Scale bar, 50 mm. (J) Quantification of the placode size

between E13 to E14. **, p,0.001.

(PDF)

Figure S3 Expression levels of various genes and quantification

of cell death in the CV placode at E12.5. (A) Total RNA was

extracted from the presumptive CVPs in wild-type and Spry22/2

littermates. The expression levels of various genes of interest were

assayed by qPCR. *, p,0.01; **, p,0.001. (B-D) TUNEL assay

was performed to quantify apoptotic cells. DNase-treated sections

from wild-type served as positive controls. Scale bar, 20 mm.

(PDF)

Figure S4 Inhibition of FGF signaling leads to the absence of

CVP development in vitro. (A-E’) Tongues were isolated from mice

at E11.5 (A-B’) and E12.5 (C-E’), grown in the absence and

presence of an inhibitor of FGF signaling (SU5402) for 3 days in

vitro, and immunostained using anti-E-cadherin. In tongues from

E11.5, there was an absence of CVP with SU5402 treatment

(A-B’). In E12.5 tongues, there was either an absence of CVP

(D,D’) or the presence of a malformed CVP (E,E’) relative to

controls (Co; C,C’). Scale bars, 50 mm. (F) A summary of

observations is presented with p-values calculated using the Fisher

exact probability test.

(PDF)
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Figure S5 b3-tubulin immunofluorescence staining demon-

strates the innervation of multiple CVPs in tongues of DKO

mice. Scale bar, 20 mm.

(PDF)

Figure S6 Summary of the variation in CVP number in the

mammalian taxa. (A) Perturbation of FGF signaling leads to effects

on CVP number in mice ranging from zero to three CVPs. The

speculative levels of FGF signaling are correlated with the number

of CVPs in the anterior-posterior orientation observed in various

mammalian species including the siamang, gorilla, chimpanzee,

and lemur. (B) Variation in mammalian CVP number. Common

species are listed for each clade. The red numbers represent the

typical number of CVPs with bracketed numbers showing the

range of numbers observed.

(PDF)

Figure S7 Analysis of the variation in mammalian CVP

number. Numbers represent the number of CVPs. The clades

are color-coded: Brown, Monotremata; Orange, Metatheria; Dark

blue, Afrotheria; Yellow, Xenarthra; Purple, Glires; Red, Arch-

onta; Green, Lipotyphla; Pink, Chiroptera; Black, Ferae; Light

Blue, Euungulata. The number of CVPs is color-coded: Red, ,3;

Black, = 3; Blue, 4–10; Green, .10.

(PDF)
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